본문 바로가기
Coursera/Mathematics for ML and Data Science

Linear Algebra for Machine Learning and Data Science (12)

by Fresh Red 2024. 5. 17.
728x90
반응형

Vectors and Linear Transformations

Check your knowledge

Q1

If $\vec u=(3,6)$ and $\vec v=(5,2)$, compute $\vec{u}+\vec{v}$ and $\vec{u}-\vec{v}$. (Videos: Vectors and their properties, Sum and difference of vectors)

더보기

Addition: (8, 8)

Subtraction: (-2, 4)

Q2

What is the distance between vectors $\vec u$ and $\vec v$? (Video: Distance between vectors)

더보기

L1-distance: 6

L2-distance: $\sqrt{20}$

Q3

If $\vec u = (3,5)$ compute 6$\vec u$. (Video: Multiplying a vector by a scalar)

더보기

(18, 30)

Q4

If $\vec u=(1,2,3)$ and $\vec v=(0,3,5)$, compute the dot product $\vec u⋅ \vec v$.

Q5

If $\vec v=\left[\begin{array}{c}1\\2\\5\end{array}\right]$ and $M = \left[\begin{array}{ccc}4&5&9\\7&1&0\\4&2&1\end{array}\right]$, compute $M \vec v$. (Video: Multiplying a matrix by a vector)

더보기

$\left[\begin{array}{c}59\\9\\13\end{array}\right]$

Q6

If $T$ is a linear transformation defined as $T(0,1)=(1,2)$ and $T(1,0)=(4,1)$, find the matrix that represents this transformation. (Videos: Matrices as linear transformations, Linear transformations as matrices)

더보기

$\left[ \begin{array}{cc}4&1\\1&2 \end{array} \right]$

Q7

If $M = \left[ \begin{array}{cc}1&2\\3&5 \end{array} \right]$ and $N = \left[ \begin{array}{cc}4&0\\1&2 \end{array} \right]$, compute $M \cdot N$ and $N^{-1}$. (Videos: Matrix multiplication, The identity matrix, Matrix inverse, Which matrices have an inverse)

더보기

$M\cdot N=\left[ \begin{array}{cc}6&4\\17&10 \end{array} \right]$ and $N^{-1}= \left[ \begin{array}{cc}{1\over4}&0\\-{1\over8}&{1\over2} \end{array} \right]$

All the information here is based on the Linear Algebra for Machine Learning and Data Science | Coursera from DeepLearning.AI

728x90
반응형

home top bottom
}