Gradients and Gradient Descent
Quiz
Q1
Given that $f(x,y) = x^2y+3x^2$, find its derivative with respect to $x$, i.e. find ${\partial f\over \partial x}$
Answer
$2xy+6x$
Q2
Given that $f(x,y)=xy^2+2x+3y$, its gradient, i.e. $\nabla f(x,y)$ is:
- $\left[\begin{array}{c} 2xy+3\\ y^2+2 \end{array}\right]$
- $\left[\begin{array}{c} 2xy\\ 2x+3 \end{array}\right]$
- $\left[\begin{array}{c} y^2+2\\ 2xy+3 \end{array}\right]$
- $\left[\begin{array}{c} 2y\\ 0 \end{array}\right]$
Answer
3
Correct! Applying the gradient's formula: $\nabla f(x,y) = \left[\begin{array}{c} {\partial f\over \partial x}\\ {\partial f\over \partial y} \end{array}\right]$, you can get the result!
Q3
Let $f(x,y)=x^2+2y^2+8y$. The minimum value of $f$ is:
Hint: The question asks for the minimum value that the function can output, and not the point (x, y) that gives it.
Answer
-8
You are correct! Finding the $x$ and $y$ values that satisfies $\nabla f(x,y) = ( {\partial f\over \partial x}, {\partial f\over \partial y}) = (0,0)$ and then applying them to $f(x,y)$ gives you the correct result!
Q4
The gradient of $f(x,y,z)=x^2+2xyz+z^2$ is:
- $\left[\begin{array}{c} 2x+2yz\\ 2xz\\ 2xy+2z \end{array}\right]$
- $\left[\begin{array}{c} 2x+2xz\\ 2yz\\ 2xy+z \end{array}\right]$
- $\left[\begin{array}{c} 2x+2yz\\ 2xy\\ 2xy+z \end{array}\right]$
- $\left[\begin{array}{c} 2yz+2xz\\ 2z\\ 2x \end{array}\right]$
Answer
1
All the information provided is based on the Calculus for Machine Learning and Data Science | Coursera from DeepLearning.AI
'Coursera > Mathematics for ML and Data Science' 카테고리의 다른 글
Calculus for Machine Learning and Data Science (9) (0) | 2024.08.30 |
---|---|
Calculus for Machine Learning and Data Science (8) (1) | 2024.08.29 |
Calculus for Machine Learning and Data Science (6) (0) | 2024.08.27 |
Calculus for Machine Learning and Data Science (5) (0) | 2024.08.26 |
Calculus for Machine Learning and Data Science (4) (0) | 2024.08.25 |